The study showed that southern Spain and other temperate locations between 40 and 50 degrees latitude are at the greatest risk for the spread of Xylella fastidiosa.
A new study from the University of Málaga has revealed a broad bioclimatic potential for the expansion of Xylella fastidiosa.
The study, which was done by the university’s geography department, warned that increased areas of Spain and other countries with temperate climates are likely to be most exposed to this risk for expansion.
The success in the management of (biological risks) depends on our ability to predict the potential geographic ranges of invading organisms and identify the factors that promote its spread.
The research conducted by the university has led to the development of the first multi-scale and multi-factor model that evaluates the potential regional and global reach of the bacteria, which is very harmful to olive trees.
The study also identified the regions with the highest risk of exposure to the bacteria, which include the south of Brazil and the United States, Central America and southern Europe.
See Also:Xylella fastidiosa NewsAccording to the models, Australia and southern Africa are two areas where Xylella may also arrive. Zones beyond latitudes of 40 to 50 degrees appeared to be at a lower risk.
The rapid spread of Xylella and the serious damages it has caused to Italian olive groves is causing concern among producers around the olive oil world. Many are worried that the continued spread of the disease will have a potentially catastrophic impact on the global olive and olive oil industries.
In Spain, in particular, the study showed that the Iberian Peninsula is at particularly high risk to the entrance and spread of Xylella, which is already widespread in the Balearic Islands. The models identified the Mediterranean coast and the southwest of Spain, with high temperatures and a lot of rain in winter, as the areas at the highest risk.
The study also showed numerous similarities of the parts of Spain with the highest risk of contracting and propagating Xylella. These included each location’s proximity to coastal zones where agriculture is very present, their intermediate population densities, which are well connected.
Areas with a lower risk were located in the interior of the peninsula and had an intermediate population density.
The map is the first of its kind due to the incorporation of ecological niche models, which analyzed the relationship between registries of current Xylella cases and bioclimatic data that evaluated 19 variables related to temperature and rainfall.
Prior to this research Xylella fastidiosa’s global distribution models had been developed based on the extrapolation of very specific regional data.
Oliver Gutiérrez Hernández, a professor at the University of Málaga’s geography department and Luis García, from Spain’s National Research Council, argued in the study that in order to properly examine the scope for the spread of Xylella, more data than was used in previous studies had to be taken into account.
“In the Anthropocene, geography plays a crucial role in the management of biological risks,” the pair wrote. “The success in the management of them depends, to a large extent, on our ability to predict the potential geographic ranges of invading organisms and identify the factors that promote its spread.”
However, Gutiérrez Hernández and García also acknowledged that the study and model they have constructed have several limits, including that data has only been taken from areas where Xylella is known to be present. This means data from areas where the disease may also be viable but has not yet been detected has been left out.
The unpredictability of human interaction with the disease can also not be completely accounted for in the models.
“Ecological niche models based on bioclimatic data underestimate the potential distribution when the human beings intervene as a vector of the species,” Gutiérrez Hernández and García wrote.
More articles on: olive oil research, Xylella fastidiosa
Apr. 22, 2024
How Oleuropein Influences Extra Virgin Olive Oil Taste and Health Benefits
Along with oleocanthal and hydroxytyrosol, oleuropein is one of the main polyphenols found in extra virgin olive oil that determines its sensory characteristics and health benefits.
Sep. 16, 2024
University of California Releases Manual on Growing Olives for Oil Production
The Olive Production Manual for Oil covers olive farming, from positioning orchards to milling, with chapters written by experts in each field.
Mar. 7, 2024
Ancient Olive Groves on Capri Are Reservoirs of Biodiversity
Researchers traced the origins of the island’s olive trees to Crete and mainland Italy and discovered 21 new varieties.
May. 1, 2024
Researchers Investigate Links Between MedDiet Adherence and Oral Health
The Mediterranean diet's antimicrobial and anti-inflammatory effects and its role in maintaining beneficial microorganisms are linked with positive oral health outcomes.
Apr. 9, 2024
The Role of Monounsaturated Fatty Acids in Olive Oil's Health Benefits
Oleic acid, classified as a monounsaturated fatty acid (MUFA), has been extensively studied by scientists over the last decades, consistently demonstrating many positive effects on human health.
Jul. 15, 2024
Xylella Fastidiosa Identified in Extremadura
Extremadura joins the Balearic Islands and the Community of Valencia as the Spanish regions with active Xylella infestations.
Sep. 18, 2024
Project Turns Olive Waste Into Supercapacitors
A research project in Spain has concluded after developing an effective process to repurpose olive waste for several industrial applications.
Feb. 13, 2024
The Role of Gulls in Spreading Olive Seeds Across Balearic Islands
Gulls contributed to the long-distance spread of local olive seeds, facilitating the colonization and expansion of the variety