New phenolic compounds belonging to the oleuropein and ligstroside aglycon family have been discovered in oils from the Koroneiki and Mission olive varieties.
The Mediterranean diet is the world’s most studied dietary pattern and has been shown to provide valuable health benefits and reduce the risk of numerous diseases.
Extra virgin olive oil (EVOO) is the major source of lipids in the Med Diet and is consumed on a daily basis. EVOO contains powerful phenolic compounds that exert many of these known health benefits, namely hydroxytyrosol, tyrosol and their derivatives.
Understanding the chemical identity of the various phenolic compounds is critically important for furthering research and for permitting specific health claims in relation to specific phenolic compounds. However, it has been noted that some literature does not accurately define terms and can often be misleading, in some cases causing problems in translating results and outcomes. Without a doubt, there are technical difficulties; however, there is no officially defined method for the measurement of phenolic compounds, particularly in relation to making health claims, something that the European Union Legislation (EU 432/2012) has recently permitted.
According to research published in OLIVAE, key compounds in hydroxytyrosol and tyrosol “are found in olive oil mainly in the esterified forms of oleacein (3,4‑DHPEA – EDA) and oleocanthal (p‑DHPEA – EDA) as well as oleuropein aglycon (3,4‑DHPEA-EA) and ligstroside aglycon (p‑HPEA-EA), which all have significant biological activities.” However, the researchers also suggest that in particular, “oleuropein aglycon and ligstroside aglycon are terms that are not accurately defined and are often used in a misleading way.” Most notably the confusion comes from reporting the various complicated and descriptive names, “hydroxylated form, monoaldehydic form, dialdehydic form, hydrated form, open ring, closed ring, carboxylated, decarboxylated” and so forth.
During their research, Panagiotis Diamantakos1, Angeliki Velkou, Brian Killday, Thanasis Gimisis, Eleni Melliou1, and Prokopios Magiatis discovered for the first time ever, new olive oil (OO) ingredients belonging to the oleuropein and ligstroside aglycon family. The researchers suggest naming the new compounds oleokoronal, oleomissional and ligstrodial “to minimize the confusion arising from the use of complicated or abbreviated names.”
To discover the compounds, the researchers conducted screening of 2,000 varieties of OO using NMR analysis. To ensure the results were not an artifact of the extraction and dilution process, and to prove that they were real ingredients, the researchers used a EVOO sample without any solvent and put it through an excitation pulse experiment before comparing it to a diluted form of the same EVOO. The experiment revealed “the enol form 14 of ligstroside aglycon” for both EVOO samples, indicating that the ingredients were real.
According to the research, Koroneiki and Mission varieties were the first observable EVOO varieties discovered to contain oleokoronal and oleomissional. The authors stated that “in most of the oils studied the concentration of oleokoronal and oleomissional and of the related dialdehydes was lower than that of oleocanthal and oleacein and in many cases they were totally absent.”
At this stage, it appears that these newly noted phenolics are only present in certain varieties, or may be dependent on the production parameters of oils.
More articles on: chemical analysis of olive oil, NMR (Nuclear Magnetic Resonance), oleocanthal
Apr. 3, 2024
Uruguay to Host Conference on Olive Oil Sector Research, Innovation
Scientists, producers and officials will meet in Uruguay in November to discuss the challenges and opportunities for South America’s olive oil sector.
Aug. 7, 2024
Researchers Identify 30 New Olive Varieties in Aragón
Further investigation is underway to determine the varieties’ characteristics and identify whether any could be used to produce olive oil on a commercial scale.
Oct. 13, 2024
Low-Cost Olive Pest Control Solution in Development
Researchers in Spain are developing an artificial intelligence tool to help farmers sustainably and affordably monitor for pests and take action against infestations.
Jul. 15, 2024
Med Diet Adherence Associated with Lower Mortality Risk for Cancer Survivors
Researchers followed 800 cancer survivors for more than a decade, observing that Mediterranean diet adherence could be associated with a lower all-cause mortality.
Feb. 1, 2024
Olive Oil Metabolites Linked with Improved Cardiovascular Disease Outcomes
The research demonstrated a link between virgin olive oil metabolite profiles and reduced risk of cardiovascular disease, but not diabetes.
Mar. 6, 2024
Xylella May Not Be Responsible for Olive Tree Devastation in Puglia, Study Finds
The findings could unravel a decade of policy and understanding that Xylella fastidiosa was the leading cause of Olive Quick Decline Syndrome in Puglia.
Feb. 13, 2024
The Role of Gulls in Spreading Olive Seeds Across Balearic Islands
Gulls contributed to the long-distance spread of local olive seeds, facilitating the colonization and expansion of the variety
Mar. 10, 2024
Researchers Use Ultrasound to Detect Adulterated Olive Oil
They could detect extra virgin olive oil adulterated with as little as one percent sunflower or refined olive oil.