The same genetic traits that allow the Lactobacillus pentosus bacteria to survive the table olive fermentation process may also help the microorganisms to bioquench and eliminate harmful heavy metals.
A group of researchers from the University of Jaén have identified a strain of bacteria found in table olives that may help the human body to bioquench heavy metals during digestion.
Lactobacillus pentosus, the bacteria responsible for the bioquenching, is naturally occurring in the olive tree. Its presence is amplified during the fermentation process, through which table olives go in order to remove the naturally bitter taste of the fresh fruit.
These bacteria act as a sponge that traps these types of particles, reducing their availability in the digestive system and eliminating them through feces.- Hikmate Abriouel, researcher at the University of Jaén
The researchers found that the bacteria coats the lining of the intestine and prevents molecules of heavy metals, such as arsenic, cadmium or mercury, from being digested and entering the bloodstream.
All three of these heavy metals are known to be toxic to humans and are nearly impossible for the body to eliminate once they have been absorbed.
See Also:Olive Oil Health Benefits“These bacteria act as a sponge that traps these types of particles, reducing their availability in the digestive system and eliminating them through feces,” Hikmate Abriouel, one of the study’s authors and a researcher at the university, said.
While the Lactobacillus pentosus bacteria are naturally occurring, they become concentrated during the fermentation process.
The limited availability of nutrients, high salinity and low pH of the brine, along with the presence of antimicrobials, such as phenolic compounds and oleuropein, creates a harsh environment for bacteria to survive and reproduce in.
However, the researchers discovered that the Lactobacillus pentosus bacteria contains genes that allow it to survive in the hostile brine environment, due to its ability to metabolize certain carbohydrates and the unique structure of the bacteria’s cell membranes.
It is due to these adaptive mechanisms, the researchers concluded, that the bacteria is also able to bioquench the heavy metals.
“The bacteria that allow these particles to be retained are in the olive already in the tree,” Abriouel said. “When it undergoes fermentation, these microorganisms proliferate because of their ability to grow in an environment with low pH and also, as we have seen, in the presence of these heavy metals, which they can trap.”
The researchers also compared the ability of the Lactobacillus pentosus bacteria to bioquench the heavy metals both before and after having been fermented. They found that the bacteria were far more effective in doing so post-fermentation.
“In bacteria, plasmids [small DNA molecules within a cell that are separated from the chromosomal DNA] harbor an additional genetic material present in the chromosome, which are involved in various processes such as resistance to pathogens or antibiotics,” Abriouel said. “Fermentation allows these bacteria to grow and in that habitat they express a series of genes, such as this one [that helps bioquench the heavy metals], whose purpose is to allow it [the bacteria] to exist and subsist in the environment.”
Indeed the researchers found that post-fermentation, the Lactobacillus pentosus bacteria experience a two to eight-fold increase in their ability to bioquench the heavy metals.
In the study, the researchers investigated this process in the Aloreña variety of olive, which has a Protected Designation of Origin (PDO) status from Malaga.
The researchers said they plan to continue studying the Lactobacillus pentosus bacteria in other varieties of olives as well, in order to further understand its relationship with heavy metals.
The results of their first study have been published in the journal Nature.
More articles on: health, olive oil research, table olives
Jul. 15, 2024
Med Diet Adherence Associated with Lower Mortality Risk for Cancer Survivors
Researchers followed 800 cancer survivors for more than a decade, observing that Mediterranean diet adherence could be associated with a lower all-cause mortality.
Sep. 5, 2024
Bringing Peloponnesian Flavors to American Kitchens
The producer behind Kosterina believes there is a place in the American kitchen for Koroneiki olive oil produced in its place of origin and traditionally cured Greek olives.
Jan. 15, 2024
Oleocanthal: Behind the Health Benefits of Olive Oil's Famous Phenol
Found solely in extra virgin olive oil, oleocanthal demonstrates potent anti-inflammatory properties and has been linked to beneficial impacts on cancer and dementia.
Mar. 7, 2024
Ancient Olive Groves on Capri Are Reservoirs of Biodiversity
Researchers traced the origins of the island’s olive trees to Crete and mainland Italy and discovered 21 new varieties.
Aug. 19, 2024
A Low-Fat Vegan Diet May Lower LDL Cholesterol More than An Olive Oil-Enriched Diet
While a study confirmed previous research about the relationship between extra virgin olive oil and cholesterol, some experts criticized its design.
Sep. 16, 2024
Table Olive Production in Spain Rebounds, but Falls Short of Initial Expectations
Farmers warn that a hot and dry August impacted the size and marketability of table olives.
Apr. 30, 2024
Scientific Review Links Med Diet Adherence With Improved Urological Health
Researchers reviewed almost 1,000 studies to determine the associations between following the Mediterranean diet and improved urological and sexual health outcomes.
May. 7, 2024
Olive Oil Export Ban Sours Table Olive Sales in Turkey
While table olive exports soared in the first five months of the 2023/24 campaign, the ban on olive oil exports is blamed for holding the sector back.