Quality parameters were unaltered by crushing speed, but extraction efficiency and chlorophylls content increased with faster hammer mill rotor speed in a continuous industrial process.
Researchers have analyzed how modifying the hammer mill rotor speed affects the extraction efficiency, quality, phenolics, volatiles and sensory profile of olive oils from super-high-density planted Arbosana olives processed in an industrial facility.
The study, Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil, will be published in the March 2018 journal Food Chemistry.
The team included Selina Wang and Juan Polari of the University of California at Davis; David Garcí-Aguirre of Corto Olive Co.; and Lucía Olmo-Garcia and Alegría Carrasco-Pancorbo of the University of Granada.
The results revealed that quality parameters such as free fatty acidity (FFA), peroxide value (PV), UV absorbances, diaclyglycerols (DAGs) and Pyropheophytins (PPP) were unaltered by crushing speed, but extraction efficiency and chlorophylls content increased linearly with faster hammer mill rotor speed in a continuous industrial process.
Quantitative values of total phenols and some individual phenolic compounds, such as 3,4‑DHPEA-EDA and p‑HPEA-EDA, increased with rotor speed. Similarly, the level of triterpenic compounds, such as oleanolic acid and maslinic, increased significantly when higher crushing speeds were applied.
“This is not only the first study on the effect of hammer mill speed in the industrial scale olive oil processing facility but the first peer-reviewed article on olive oil processing published from a U.S. institution,” said Wang. “It also showcased the collaboration between academia and industry” to identify a relatively minor production adjustment that producers can employ to improve yield along with certain aspects of EVOO quality.
When asked why the hammer speed led to higher phenol levels in the research, Wang said her team hypothesized that “the escalated cutting action on the olive fruit potentially released more phenolic compounds resulting in higher levels in the oil by decreasing the oil droplets diameter, augmenting the oil/water emulsion interphase area and facilitating the mass transfer of phenols to the lipid phase after the action of β‑glucosidase.”
Higher levels of phenolic compounds would increase the shelf life of an oil and lead to greater health benefits to consumers.
More articles on: olive oil milling, olive oil research, UC Davis Olive Center
Dec. 19, 2024
Olive Polyphenols Show Promise as Aquaculture Feed Ingredient
A new study demonstrates the benefits of polyphenols derived from olive industry waste in aquacultural feeds.
Feb. 15, 2024
Five-Year Project Delivers Infrastructure and Training for Algerian Olive Farmers
The PASA program planted training groves, researched local cultivars and delivered an olive oil laboratory in five years.
Jun. 24, 2024
Olive Council Incorporates Germplasm Bank Into Global Treaty
By joining the treaty, the IOC plans to facilitate greater cooperation to preserve genetic diversity and find solutions to climate change-related challenges.
Aug. 13, 2024
Olive Center to Host Inaugural Olive Oil Sustainability Conference
The International Olive Sustainability Conference will discuss sustainability, from farming and milling to marketing and certifications.
May. 16, 2024
Daily Olive Oil Consumption Linked to Lower Dementia Death Risk, Study Finds
Harvard researchers found that daily consumption of at least seven grams of olive oil was associated with a 28 percent lower risk of dementia-related death.
Feb. 20, 2024
New Research Rekindles Debate on Nutri-Score’s Effectiveness
The OECD found Nutri-Score could save money on healthcare. Dutch researchers questioned the integrity of studies supporting the labeling system.
Dec. 30, 2024
Decoding the Olive Fly's Symbiotic Secret
The Candidatus Erwinia dacicola bacteria allows olive fruit fly larvae to feed on green olives by overcoming their natural defenses.
May. 7, 2024
Mediterranean Diet and Exercise Associated with Better Gut Health in Older Adults
The study demonstrated these improvements to gut health yielded significant cardiovascular health benefits in older Mediterranean adults.