Quality parameters were unaltered by crushing speed, but extraction efficiency and chlorophylls content increased with faster hammer mill rotor speed in a continuous industrial process.
Researchers have analyzed how modifying the hammer mill rotor speed affects the extraction efficiency, quality, phenolics, volatiles and sensory profile of olive oils from super-high-density planted Arbosana olives processed in an industrial facility.
The study, Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil, will be published in the March 2018 journal Food Chemistry.
The team included Selina Wang and Juan Polari of the University of California at Davis; David Garcí-Aguirre of Corto Olive Co.; and Lucía Olmo-Garcia and Alegría Carrasco-Pancorbo of the University of Granada.
The results revealed that quality parameters such as free fatty acidity (FFA), peroxide value (PV), UV absorbances, diaclyglycerols (DAGs) and Pyropheophytins (PPP) were unaltered by crushing speed, but extraction efficiency and chlorophylls content increased linearly with faster hammer mill rotor speed in a continuous industrial process.
Quantitative values of total phenols and some individual phenolic compounds, such as 3,4‑DHPEA-EDA and p‑HPEA-EDA, increased with rotor speed. Similarly, the level of triterpenic compounds, such as oleanolic acid and maslinic, increased significantly when higher crushing speeds were applied.
“This is not only the first study on the effect of hammer mill speed in the industrial scale olive oil processing facility but the first peer-reviewed article on olive oil processing published from a U.S. institution,” said Wang. “It also showcased the collaboration between academia and industry” to identify a relatively minor production adjustment that producers can employ to improve yield along with certain aspects of EVOO quality.
When asked why the hammer speed led to higher phenol levels in the research, Wang said her team hypothesized that “the escalated cutting action on the olive fruit potentially released more phenolic compounds resulting in higher levels in the oil by decreasing the oil droplets diameter, augmenting the oil/water emulsion interphase area and facilitating the mass transfer of phenols to the lipid phase after the action of β‑glucosidase.”
Higher levels of phenolic compounds would increase the shelf life of an oil and lead to greater health benefits to consumers.
More articles on: olive oil milling, olive oil research, UC Davis Olive Center
Aug. 13, 2024
Olive Center to Host Inaugural Olive Oil Sustainability Conference
The International Olive Sustainability Conference will discuss sustainability, from farming and milling to marketing and certifications.
Oct. 13, 2024
Low-Cost Olive Pest Control Solution in Development
Researchers in Spain are developing an artificial intelligence tool to help farmers sustainably and affordably monitor for pests and take action against infestations.
May. 13, 2024
Study Sheds Light on Lowering Harvest Costs for Table Olive Producers
A combined canopy and trunk shaking method to harvest table olives increases efficiency by 75 percent and improves fruit quality.
Sep. 16, 2024
University of California Releases Manual on Growing Olives for Oil Production
The Olive Production Manual for Oil covers olive farming, from positioning orchards to milling, with chapters written by experts in each field.
Nov. 13, 2024
Early Intervention with EVOO Shows Promise in Reducing Down Syndrome Symptoms
New research in mice suggests that extra virgin olive oil consumption could mitigate neurodegenerative effects caused by Downs syndrome.
Jul. 15, 2024
Med Diet Adherence Associated with Lower Mortality Risk for Cancer Survivors
Researchers followed 800 cancer survivors for more than a decade, observing that Mediterranean diet adherence could be associated with a lower all-cause mortality.
Mar. 6, 2024
Xylella May Not Be Responsible for Olive Tree Devastation in Puglia, Study Finds
The findings could unravel a decade of policy and understanding that Xylella fastidiosa was the leading cause of Olive Quick Decline Syndrome in Puglia.
May. 7, 2024
Mediterranean Diet and Exercise Associated with Better Gut Health in Older Adults
The study demonstrated these improvements to gut health yielded significant cardiovascular health benefits in older Mediterranean adults.