News Briefs
Scientists from the University of Córdoba’s olive genetics research group have found that changes in the phenolic profiles during the olive ripening process play a fundamental role in the resistance to anthracnose.
The economically damaging olive tree disease is caused by the Colletotrichum fungus. The fungus causes severe rot in olives, leading to significant crop losses.
Olive oil from olives contaminated by fungus has higher acidity and organoleptic defects. It usually falls into the lampante category and is unsuitable for human consumption.
See Also:Researchers Identify Three Olive Varieties Resistant to Pervasive Fungus“We analyzed six varieties for two years, carrying out analyses of phenolic compounds and resistance tests to the pathogen,” said Hristofor Miho, a PhD student at the University of Córdoba and first author of the study.
“The results allowed us to observe that resistance was greater in varieties with high phenolic concentrations and specific phenols present in them,” he added.
The researchers selected Empeltre and Frantoio cultivars, known for their resistance to the fungus; Hojiblanca and Picudo, known for their lack of resistance; and Barnea and Picual, considered moderately resistant.
Olives were harvested from the World Olive Germplasm Bank of Córdoba before they began to ripen and at three ripening stages: green, turning and ripe.
Samples were taken to determine the olives’ phenolic profiles, and they were then inoculated using spores of the most common Colletotrichum strain found in Spain and Italy.
While all green olives are immune to the fungus, they accumulate inactive Colletotrichum infections in the form of appressoria, an organ-like structure that penetrates the fruit.
“This infection remains latent during fruit development until ripening, resulting in pathogen reactivation and disease development,” the researchers wrote. “Subsequently, olive fruit susceptibility to the pathogen increases during ripening, while in parallel, there is a decrease in total phenolic compounds.”
The researchers also isolated seven standard phenolic compounds to test their antifungal activity: hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, oleacein, oleocanthal and hydroxytyrosol 4‑O-glucoside.
“Oleocanthal exhibited the highest inhibitory activity, followed by oleacein, oleuropein aglycone, hydroxytyrosol and tyrosol,” the researchers wrote.
See Also:Genotype Plays Significant Role in Fatty Acid Content of Virgin Olive OilOleuropein, ligstroside (the precursor of oleocanthal) and their derivatives, including oleacein, were the most critical compounds inhibiting spore germination.
The compounds are predominant in all green fruits regardless of cultivar and represent more than 90 percent of total phenols during ripening of the main resistant cultivars.
Meanwhile, susceptible cultivars converted oleuropein, oleacein and oleocanthal into hydroxytyrosol-4-O-glucoside as they ripened, which reduced anthracnose tolerance.
“Overall, resistant cultivars induced the synthesis of aldehydic and demethylated forms of phenols [oleuropein, oleocanthal and oleacein], which highly inhibited fungal spore germination,” the researchers wrote. “In contrast, susceptible cultivars promoted the synthesis of hydroxytyrosol 4‑O-glucoside during ripening, a compound with no antifungal effect.”
They further found that a total phenolic concentration of 50,000 milligrams per kilogram in all samples of developing olives across cultivars completely inhibited spore germination.
The researchers observed that cultivars susceptible to the fungus experienced a 73 percent decline in phenolic compounds during ripening, while resistant cultivars experienced a 28 percent decline.
“The sharp phenolic reduction of the susceptible cultivars caused the complete reduction of the antifungal activity,” they wrote. “Interestingly, the lesser phenolic decrease of the resistant cultivars did not reduce the inhibitory effect of spore germination.”
Juan Moral, who oversaw the research, said the study would help policymakers and farmers select new varieties to plant and inform researchers about what varieties to crossbreed for more resistant hybrids.
“Knowing how the phenolic cascades [changes in the phenolic compounds] behave in the different varieties will allow us to better select, based on scientific criteria, the parents that should be used so that the following generations of olive trees are resistant to this disease,” he concluded.
More articles on: olive oil research, pests, polyphenols
Apr. 16, 2024
Researchers Investigate Solar Panel and Olive Grove Synergies
Solar panels between rows of high-density olive groves generate electricity with minimal impact on yields.
May. 1, 2024
Researchers Investigate Links Between MedDiet Adherence and Oral Health
The Mediterranean diet's antimicrobial and anti-inflammatory effects and its role in maintaining beneficial microorganisms are linked with positive oral health outcomes.
Mar. 25, 2024
Scientists Defend Study Finding Xylella Not Responsible for Most OQDS
Margherita Ciervo and Marco Scortichini defend their research that found Xylella fastidiosa was not responsible for most Apulian olive tree deaths over the past decade.
Oct. 13, 2024
Mediterranean Diet Adherence Linked to Lower Risk of Atrial Fibrillation
A recent study has described the Mediterranean diet as a robust preventative strategy against the development of atrial fibrillation, potentially due to its polyphenols.
Jan. 28, 2025
Mill Wastewater Extract Yields Promising Health Benefits
A dietary supplement made with hydroxytyrosol extracted from olive mill wastewater inhibited the production of inflammatory compounds and showed antibacterial properties.
Jul. 24, 2024
New Process Increases Sustainability, Phenolic Profile of Olive Leaf Extracts
A novel approach does not use harmful chemicals and creates an extract with potential uses in olive oil production and food packaging.
Sep. 16, 2024
University of California Releases Manual on Growing Olives for Oil Production
The Olive Production Manual for Oil covers olive farming, from positioning orchards to milling, with chapters written by experts in each field.
Aug. 13, 2024
Olive Center to Host Inaugural Olive Oil Sustainability Conference
The International Olive Sustainability Conference will discuss sustainability, from farming and milling to marketing and certifications.